viernes, 8 de noviembre de 2013

PROPIEDADES DE LAS DISOLUCIONES

Propiedades Coligativas

Propiedades Coligativas

Los líquidos tienen propiedades fisicas características como: densidad, ebullición, congelación y evaporación, viscosidad, capacidad de conducir corriente, etc. Para estas propiedades cada líquido presenta valores característicos constantes. Cuando un soluto y un disolvente dan origen a una disolución, la presencia del soluto determina la modificación de estas propiedades con relación a las propiedades del solvente puro.

Propiedades de las disoluciones:
1. propiedades constitutivas: aquellas que dependan de la naturaleza de las partículas disueltas. Ej. viscosidad, densidad, conductividad electrica, etc.

2. Propiedades coligativas: dependen del número de particulas disueltas en una cantidad fija de disolvente y no de la naturaleza de estas particulas. Ej. Descenso de la presión de vapor, aumento del punto de ebullición, disminución del punto de congelación, presión osmótica.

Utilidades de las propiedades coligativas:
a. separar los componentes de una solución por destilación fraccionada
b. formular y crear mezclas frigorificas y anticongelantes
c. determinar masas molares de solutos desconocidos
d. formular sueros fisiológicos para animales
e. formular caldos de cultivos para microorganismos
f. formular soluciones de nutrientes especiales para regadios de vegetales

Las disoluciones deben ser relativamente diluidas (menores a 0,2 M), en donde las fuerzas de atracción intermolecular entre soluto y solvente serán mínimas.
--------------------------------------------------------------------
Presión de Vapor

Evaporación es la tendencia de las partículas de la superficie del liquido, a salir de la fase liquida en forma de vapor. Es importante saber que no todas las partículas de liquido tienen la misma energía cinetica (no todas se mueven a la misma velocidad). Las particulas con mayor energía en la superficie pueden escaparse a la fase gaseosa. Las moleculas de la fase gaseosa que chocan contra la fase liquida ejercen una fuerza contra la superficie del líquido, a la que se le denomina presión de vapor, cuando ambas fases están en equilibrio dinámico. Esta presión de vapor depende de la temperatura y de la naturaleza del líquido.

Conclusiones:
1. Para un mismo líquido, la presión de vapor aumenta a medida que aumenta la temperatura
2. Líquidos diferentes a la misma temperatura presentan presiones de vapor diferentes.
-------------------------------------------------------------------
Propiedad Coligativa 1: Descenso de la presión de vapor

Los liquidos no volatiles presentan una gran interacción entre soluto y solvente, por lo tanto su presión de vapor es pequeña, mientras que los liquidos volatiles tienen interacciones moleculares más debiles, lo que aumenta la presión de vapor. Si el soluto que se agrega es no volatil, se producirá un descenso de la presión de vapor, ya que este reduce la capacidad del disolvente a pasar de la fase líquida a la fase vapor. El grado en que un soluto no volatil disminuye la presion de vapor es proporcional a su concentración.

Ley de Raoult = "A una temperatura constante, el descenso de la presión de vapor es proporcional a la concentración de soluto presente en la dispolución"
Pv = Po X

La Presión de vapor es proporcional a la Presión de vapor en estado puro y su fraccion molar (X)

Las diferencias entre las presiones de vapor se cuantifican segun las siguientes relaciones:
Pv = PoA - PB
PV= P0A XB
P0A- PA = P0A XB
tambien se debe considerar una solución formada por dos componentes A y B:
PA = XA P0A y PB = XB P0B
La presion total Pt es: PT = XA P0A + XB P0B

Ej. Consideremos una disolución formada por 1 mol de benceno y 2 moles de tolueno. El benceno presenta una presión de vapor P0 de 75 mmmHg y el Tolueno de 22mmHg a 20°C. ¿Cuál es la Presion total?

Respuesta: La fracción molar de benceno y Tolueno serán:

Xbenceno = 1 / 1+2 = 0,33 X Tolueno = 2 /1+2 = 0,67

Las presiones parciales serán:
Pbenceno = 0,33 x 75mmHg = 25 mmHg ; P Tolueno = 0,67 x 22 mmHg = 15 mmHg
y la PT será: PT = 25 mmHg + 15 mmHg = 40 mmHg.
-------------------------------------------------------------------
Propiedad Coligativa 2: Aumento punto de Ebullición

Un disolvente tiene menor numero de particulas que se convierten en gas por la acción de las moleculas del soluto en la superficie. Esto provoca el descenso del punto de ebullición, pues la presión de vapor se igualará a la presión atmosferica a mayor temperatura.
Asi dTe = PeAB - P0B
El descenso del punto de ebullición dTe se obtiene por la diferencia entre el punto de ebullición de la disolución (PeAB) y el punto de ebullición del disolvente puro (PoB).
Además se sabe también que dTe = Ke m
donde Ke es la constante ebulloscopica que establece el descenso del punto de ebullición de una disolución 1 molal y es propia de cada disolvente y está tabulada. Para el caso del agua es 0,52°C/m. m es la molalidad.

Ej. ¿Cuál es el punto de ebullición de una solución de 100g de anticongelante etilenglicol C2H6O2 en 900 g de agua (Ke= 0,52°C/m). (datos: masa soluto 100g; peso molecular etilenglicol 62 g/mol; masa solvente agua 900g; peso molecular agua 18 g/mol; Ke = 0,52°C/m; T°e= 100°C)

Respuesta: Si dTe= Te - T°e (1) y dTe = Ke m (2), para obtener Te necesitamos dTe (ascenso de temperatura de ebullición), lo obtenemos de ecuación (2).
62g ----- 1 mol
100g ----X moles ; X = 1,613 moles de soluto

Molalidad = 1,613 moles/ 0,9 Kg solvente = 1,792 molal
Luego dTe = 0,52°C/m x 1,792 molal = 0,9319°C
Asi en la ecuación (1), dTe = 0,9319 = Te - T°e
0,9319 + 100 = Te
Te = 100,9319°C
-------------------------------------------------------------------
Propiedad Coligativa 3: Descenso punto de congelación

En una solución, la solidificación del solvente se producirá cuando éste rompa sus interacciones con el soluto y se enlace nuevamente como si estuviera puro. Para ello la temperatura debe bajar más que el punto en el cual el disolvente se congelaría puro, por lo tanto, el punto de congelación es siempre más bajo que el disolvente puro y directamente proporcional a la concentración del soluto.

El descenso del punto de congelación dTc = T°cB - TAB
siendo T°cB el punto de congelación del solvente puro y TAB el punto de congelación de la disolución.
Experimentalmente, tambien se observa que dTc = Kc m
donde Kc es la constante crioscópica que representa el descenso del punto de congelación de una solución 1 molal y es propia de cada disolvente y esta tabulada. Para el agua es 1,86°C/m; m es la molalidad.

El punto de congelación es la temperatura a la cual la presión de vapor del liquido y del sólido son iguales, provocando que el liquido se convierta en sólido.

Ej. Para el etilenglicol se debe calcular el punto de congelación de una solución de 100g de anticongelante, en 900 g de agua, sabiendo que Kc= 1,86°C/molal

Respuesta: Determinemos la molalidad de la disolucion:
62g ------ 1mol
100g -----X; X = 1,61 moles de soluto; molalidad = 1,61 moles/0,9 Kg solvente = 1,79 molal

Así dTc = 1,86°C/m x 1,79 molal = 3,33°C
despejando se obtendrá: 3,33°C = dTc = T°c - Tc ; si T°C = O°C, entonces: Tc = -3,33°C

-------------------------------------------------------------------
Propiedad Coligativa 4: Presión osmótica

Al poner en contacto dos disoluciones de diferente concentración a través de una membrana semipermeable se producirá el paso del disolvente desde la disolución más diluida hacia la más concentrada, fenomeno conocido como osmosis.

La Presión osmótica es aquella que establece un equilibri dinámico entre el paso del disolvente desde la disolución diluida hacia la mas concentrada y viceversa.

Ecuación de Van´t Hoff: pi = nRT/V; donde pi es la presión osmotica; R = 0,082 Latm/K mol; T la temperatura en °K; V el volumen en L.

Si el volumen de la solución fuera 1L entonces n/V = Molaridad y la ecuación quedaría como:
pi = MRT

Ej. La presión osmotica promedio de la sangre es 7,7 atm a 25°C. ¿Qué concentración de glucosa será isotónica con la sangre?

Respuesta: M = pi/RT, reemplazando, M=7,7 atm /0,082L atm/°Kmol x 298°K
M = 0,31 M o 5,3%

FUERZAS INTERMOLECUALRES

FUERZAS INTERMOLECULARES
Dentro de una molécula, los átomos están unidos mediante fuerzas intramoleculares (enlaces iónicos, metálicos o covalentes, principalmente). Estas son las fuerzas que se deben vencer para que se produzca un cambio químico. Son estas fuerzas, por tanto, las que determinan las propiedades químicas de las sustancias.
Sin embargo existen otras fuerzas intermoleculares que actúan sobre distintas moléculas o iones y que hacen que éstos se atraigan o se repelan. Estas fuerzas son las que determinan las propiedades físicas de las sustancias como, por ejemplo, el estado de agregación, el punto de fusión y de ebullición, la solubilidad, la tensión superficial, la densidad, etc.
Por lo general son fuerzas débiles pero, al ser muy numerosas, su contribución es importante. La figura inferior resume los diversos tipos de fuerzas intermoleculares. Pincha en los recuadros para saber más sobre ellas.







FUERZAS DE POLARIDAD (DIPOLO-DIPOLO)

Una molécula es un dipolo cuando existe una distribución asimétrica de los electrones debido a que la molécula está formada por átomos de distinta electronegatividad. Como consecuencia de ello, los electrones se encuentran preferentemente en las proximidades del átomo más electronegativo. Se crean así dos regiones (o polos) en la molécula, una con carga parcial negativa y otra con carga parcial positiva (Figura inferior izquierda).
Cuando dos moléculas polares (dipolos) se aproximan, se produce una atracción entre el polo positivo de una de ellas y el negativo de la otra. Esta fuerza de atracción entre dos dipolos es tanto más intensa cuanto mayor es la polarización de dichas moléculas polares o, dicho de otra forma, cuanto mayor sea la diferencia de electronegatividad entre los átomos enlazados (Figura inferior derecha).
Los enlaces serán tanto más polares cuanto mayor sea la diferencia de electronegatividad entre los átomos enlazados (ver tabla inferior).
Electronegatividad de algunos elementos
La electronegatividad en la Tabla Periódica
En el fluoruro de hidrógeno, por ejemplo, el F es más electronegativo que el H porque su núcleo, con 9 cargas positivas, atrae a los e- compartidos con el H con más fuerza que el núcleo del H, con una sóla carga positiva.
Por lo tanto, los e- compartidos por covalencia estarán más próximos al F que al H y la molécula forma un dipolo permanente (Figura de la izquierda).
Un ejemplo particularmente interesante de las interacciones dipolo-dipolo son los puentes de hidrógeno.
El momento dipolar (m) es un vector (orientado hacia la carga negativa y cuya magnitud depende de la intensidad de la carga y de la distancia entre los átomos) que permite cuantificar la asimetría de cargas en la molécula (Figura inferior izquierda). La forma de la molecula también afecta al momento dipolar (Figura inferior derecha).






FUERZAS ELECTROSTÁTICAS (IÓN-IÓN)

Son las que se establecen entre iones de igual o distinta carga:
            • Los iones con cargas de signo opuesto se atraen
            • Los iones con cargas del mismo signo se repelen
La magnitud de la fuerza electrostática viene definida por la ley de Coulomb y es directamente proporcional a la magnitud de las cargas e inversamente proporcional al cuadrado de la distancia que las separa (Figura de la izquierda).
Con frecuencia, este tipo de interacción recibe el nombre de puente salino. Son frecuentes entre una enzima y su sustrato, entre los aminoácidos de una proteína o entre los ácidos nucleicos y las proteínas (Figuras inferiores).
Los aminoácidos cargados de una proteína pueden establecer enlaces iónicos (puentes salinos) dentro de una proteína o entre proteínas distintas
Las cargas positivas de la proteína (en azul) se disponen en torno a la hélice del DNA cargada negativamente
La unión de una enzima a su sustrato puede estar gobernada por interacciones electrostáticas, como en el caso de la Ribulosa-bifosfato-carboxilasa








FUERZAS IÓN-DIPOLO

Son las que se establecen entre un ión y una molécula polar.
Por ejemplo, el NaCl se disuelve en agua por la atracción que existe entre los iones Na+ y Cl- y los correspondientes polos con carga opuesta de la molécula de agua. Esta solvatación de los iones es capaz de vencer las fuerzas que los mantienen juntos en el estado sólido (Figura inferior izquierda).
La capa de agua de hidratación que se forma en torno a ciertas proteínas y que resulta tan importante para su función también se forma gracias a estas interacciones (Figura inferior derecha).









FUERZAS IÓN-DIPOLO INDUCIDO

Tienen lugar entre un ión y una molécula apolar. La proximidad del ión provoca una distorsión en la nube electrónica de la molécula apolar que convierte (de modo transitorio) en una molécula polarizada. En este momento se produce una atracción entre el ión y la molécula polarizada.
Un ejemplo de esta interacción es la interacción entre el ión Fe++ de la hemoglobina y la molécula de O2, que es apolar. Esta interacción es la que permite la unión reversible del O2 a la hemoglobina y el transporte de O2 desde los pulmones hacia los tejidos (ver tabla inferior).
Unión reversible del O2 a la hemoglobina
Quitando y poniendo el cursor en la figura inferior se ven las diferencias entre las formas oxigenada y no oxigenada de la hemoglobina








FUERZAS DE VAN DER WAALS

Cuando se encuentran a una distancia moderada, las moléculas se atraen entre sí pero, cuando sus nubes electrónicas empiezan a solaparse, las moléculas se repelen con fuerza (Figura de la derecha).
El término "fuerzas de van der Waals" engloba colectivamente a las fuerzas de atracción entre las moléculas. Son fuerzas de atracción débiles que se establecen entre moléculas eléctricamente neutras (tanto polares como no polares), pero son muy numerosas y desempeñan un papel fundamental en multitud de procesos biológicos.
Las fuerzas de van der Waals incluyen:







FUERZAS DIPOLO-DIPOLO INDUCIDO

Tienen lugar entre una molécula polar y una molécula apolar. En este caso, la carga de una molécula polar provoca una distorsión en la nube electrónica de la molécula apolar y la convierte, de modo transitorio, en un dipolo. En este momento se establece una fuerza de atracción entre las moléculas.
Gracias a esta interacción, gases apolares como el O2, el N2 o el CO2 se pueden disolver en agua.







FUERZAS DIPOLO INSTANTÁNEO-DIPOLO INDUCIDO

También se llaman fuerzas de dispersión o fuerzas de London. En muchos textos, se identifican con las fuerzas de van der Waals, lo que puede generar cierta confusión.
Las fuerzas de dispersión son fuerzas atractivas débiles que se establecen fundamentalmente entre sustancias no polares, aunque también están presentes en las sustancias polares. Se deben a las irregularidades que se producen en la nube electrónica de los átomos de las moléculas por efecto de la proximidad mutua. La formación de un dipolo instantáneo en una molécula origina la formación de un dipolo inducido en una molécula vecina de manera que se origina una débil fuerza de atracción entre las dos (ver tabla inferior).
En promedio, la distribución de cargas en torno a una molecula apolar es simétrica y no hay momento dipolar
Las fuerzas de London son fuerzas de atracción entre dipolos que surgen de forma transitoria
Sin embargo, a tiempos cortos la nube electrónica puede fluctuar, creando momentos dipolares instantáneos
Estas fuerzas son mayores al aumentar el tamaño y la asimetría de las moléculas. Son mínimas en los gases nobles (He, Ne), algo mayores en los gases diatómicos (H2, N2, O2) y mayores aún en los gases poliatómicos (O3, CO2).






PUENTES DE HIDRÓGENO

Los puentes de hidrógeno constituyen un caso especial de interacción dipolo-dipolo (Figura de la derecha). Se producen cuando un átomo de hidrógeno está unido covalentemente a un elemento que sea:
  • muy electronegativo y con dobletes electrónicos sin compartir
  • de muy pequeño tamaño y capaz, por tanto, de aproximarse al núcleo del hidrógeno
Estas condiciones se cumplen en el caso de los átomos de F, O y N.
El enlace que forman con el hidrógeno es muy polar y el átomo de hidrógeno es un centro de cargas positivas que será atraído hacia los pares de electrones sin compartir de los átomos electronegativos de otras moléculas (Figura de la izquierda). Se trata de un enlace débil (entre 2 y 10 Kcal/mol). Sin embargo, como son muy abundantes, su contribución a la cohesión entre biomoléculas es grande.

La distancia entre los átomos electronegativos unidos mediante un puente de hidrógeno suele ser de unos 3 Å. El hidrógeno se sitúa a 1Å del átomo al que está covalentemente unido y a 2 Å del que cede sus e- no apareados (Figura de la derecha).
Muchas de las propiedades físicas y químicas del agua se deben a los puentes de hidrógeno. Cada molécula de agua es capaz de dormar 4 puentes de hidrógeno, lo que explica su elevado punto de abullición, ya que es necesario romper gran cantidad de puentes de hidrógeno para que una molécula de agua pase al estado gaseoso.
Este enlace es fundamental en bioquímica, ya que:
  • condiciona en gran medida la estructura espacial de las proteínas y de los ácidos nucleicos y
  • está presente en gran parte de las interacciones que tienen lugar entre distintos tipos de biomoléculas en multitud de procesos fundamentales para los seres vivos

ENLACE METALICO

La gran mayoría de los elementos conocidos son metálicos. Todos ellos son conductores del calor y de la electricidad. Se caracterizan por:
  1. Tener pocos electrones en su última capa.
  2. Bajo potencial de ionización.
Los compuestos formados entre los metales se llaman aleaciones y no obedecen, generalmente a las reglas de la estequiometría; así, el cobre disuelve al cinc en cantidades que pueden variar desde la traza hasta el 38'4%. Cualquier aleación de estos dos elementos entre esos dos porcentajes recibe el nombre de latón, y como no posee una composición definida se le clasifica como una simple disolución, aunque sus iones estén unidos por fuertes enlaces metálicos.
Todavía hoy no se conoce un modelo que explique de forma convincente como se unen los átomos de los metales. Estudios de rayos X confirman que en la red cristalina existen iones. Sin embargo debe descartarse el modelo de enlace iónico porque ello supondría la transferencia de electrones lo cual no es lógico en átomos iguales. Por otra parte el enlace covalente también queda descartado ya que en este caso los e estarían localizados y los metales no conducirían la electricidad lo que no es cierto.
Para explicar los hechos existen dos teorías: el modelo del gas de electrones y la teoría de bandas que detallamos en los apartados 5.2 y 5.3 respectivamente.

Es el modelo más sencillo basado en la intuición más que en conocimientos científicos rigurosos y está sustentado en las siguientes hipótesis:
  • Los átomos metálicos pierden sus electrones de la capa de valencia quedándose cargados positivamente.
  • Los cationes forman una red tridimensional ordenada y compacta cuya estructura depende en gran medida del tamaño de los cationes del metal.
  • Los electrones de valencia liberados ya no pertenecen a cada ión sino a toda la red cristalina, rodeando a los cationes como si fuesen un gas de electrones, neutralizando la carga positiva.
  • El gas de electrones se mueve libremente dentro de la red cristalina de cationes y no puede escapar de ella debido a la atracción electrostática con los cationes.
es decir, el modelo sugiere que los electrones de valencia están totalmente libres y deslocalizados, formando una nube electrónica que interacciona simultáneamente con muchos cationes. Esto explicaría la presencia de iones y la conductividad eléctrica de los metales. Por lo tanto, al hablar de un metal como el Fe, habría que hablar de una gran macromolécula Fen.


La teoría de bandas está basada en la mecánica cuántica y procede de la teoría de los orbitales moleculares (TOM). En esta teoría, se considera el enlace metálico como un caso extremo del enlace covalente, en el que los electrones de valencia son compartidos de forma conjunta y simultánea por todos los cationes. Desaparecen los orbitales atómicos y se forman orbitales moleculares con energías muy parecidas, tan próximas entre ellas que todos en conjunto ocupan lo que se franja de denomina una “banda de energía”.
Aunque los electrones van llenando los orbitales moleculares en orden creciente de energía, estas son tan próximas que pueden ocupar cualquier posición dentro de la banda.
La banda ocupada por los orbitales moleculares con los electrones de valencia se llama banda de valencia, mientras que la banda formada por los orbitales moleculares vacíos se llama banda de conducción. A veces, ambas bandas se solapan energéticamente hablando.
Este modelo explica bastante bien el comportamiento eléctrico no solo de las sustancias conductoras sino también de las semiconductoras y las aislantes.
En los metales, sustancias conductoras, la banda de valencia se solapa energéticamente con la banda de conducción que está vacía, disponiendo de orbitales moleculares vacíos que pueden ocupar con un mínimo aporte de energía, es decir, que los electrones están casi libres pudiendo conducir la corriente eléctrica.
En los semiconductores y en los aislantes, la banda de valencia no se solapa con la de conducción. Hay una zona intermedia llamada banda prohibida.
En los semiconductores, como el Silicio o el Germanio, la anchura de la banda prohibida no es muy grande y los electrones con suficiente energía cinética pueden pasar a la banda de conducción, por esa razón, los semiconductores conducen la electricidad mejor en caliente. Sin embargo, en los aislantes, la banda prohibida es tan ancha que ningún electrón puede saltarla. La banda de conducción está siempre vacía.
  
Las propiedades de las sustancias metálicas difieren mucho de unas a otras, pero vamos a hablar en general de todas ellas:
  1. Densidad: El empaquetamiento compacto de los iones en la red cristalina metálica hace que las densidades de los metales sean altas en general, aunque hay mucha diversidad y excepciones, por ejemplo, los metales alcalinos y el plomo son muy blandos, mientras que el osmio y el platino son muy duros. Todos son sólidos excepto el Mercurio, el Cesio y el Francio que son líquidos.
     
  2. Puntos de fusión y ebullición: En general el enlace metálico mantiene los iones fuertemente unidos dado que la mayoría poseen puntos de fusión y de ebullición muy altos, aunque hay grandes variaciones, desde el cesio, (29ºC), hasta el platino que es casi infusible.
    Los puntos de fusión y ebullición dependen en gran medida de dos factores:
     
    1. del tamaño: A medida que el tamaño del ion es mayor, el punto de ebullición disminuye.
    2. del número de electrones cedidos por cada átomo: A medida que el número de electrones cedidos por cada átomo sea mayor, el punto de fusión será más alto.
    Aquí te damos unos datos para que lo compruebes tú mismo:
    Nº de electrones enlazantes
    1 2 3
    Elemento: Temperatura de fusión (ºC)
    K  : 54 Ca : 851 Sc : 1397
    Rb : 39 Sr  : 771 Y  : 1277
    Cs : 29 Ba : 717 La :   887

  3. Conductividad eléctrica y térmica: Son buenos conductores eléctricos, ya que los electrones de la nube electrónica se pueden mover con total libertad. Por la misma razón, si los metales se calientan, los electrones adquieren mayor energía cinética que se va trasladando por todo el metal.
     
  4. Propiedades mecánicas: Son dúctiles (se pueden hacer hilos por estiramiento) y maleables (se pueden laminar) debido a la naturaleza de las fuerzas que mantienen unido al sólido, es decir, que siempre que la separación entre los cationes no sea muy grande, la nube electrónica los mantendrá unidos).



  5. Brillo: Debido a la movilidad de electrones, son capaces de absorber y después remitir prácticamente todas las longitudes de onda de la luz visible, por eso en general tienen un color negruzco y opaco; el cobre y el oro no remiten una parte de la radiación azul que reciben y por eso tienen un color amarillento.


ENLACE COVALENTE

Las sustancias covalentes son gigantescas agrupaciones de átomos unidos por enlaces covalentes formando sólidos con redes tridimensionales. Dichos átomos deben tener una electronegatividad elevada, junto con la capacidad de tener tres o cuatro electrones enlazantes para formar fuertes enlaces covalentes. Se puede considerar a todo el sólido como una gran molécula.
Ejemplos de estas sustancias son el carbono diamante, el cuarzo (dióxido de silicio), el carburo de Silicio, etc.

Como los átomos están unidos por fuertes enlaces covalentes muy estables, no es de extrañar que, estos sólidos sean extremadamente duros, tengan puntos de fusión muy altos y sean virtualmente insolubles; sólo se disuelvan en compuestos que reaccionen químicamente con ellos. Tienen escasa conductividad eléctrica debido a la gran localización de los electrones en las regiones donde se encuentran los enlaces covalentes que hacen que sean incapaces de moverse libremente por la acción de un campo eléctrico externo.

a) Cuarzo: El cuarzo es una estructura particular de cristalizar el dióxido de silicio. Cada átomo de Si se encuentra enlazado con 4 de O y a su vez cada O está unido a dos Si mediante enlaces covalentes polares, formando una red de gran número de átomos, (SiO2).
Cuarzo (dióxido de Silicio)
 
 
b) Carbono diamante: En el carbono diamante, los átomos de carbono se unen para formar un retículo cristalino de dimensiones infinitas, en la que cada uno de ellos se une a otros cuatro mediante enlaces covalentes puros formando estructuras tetraédricas. Esto explica su elevada dureza, su baja reactividad, su nula conductividad eléctrica y su casi infusibilidad.
Carbono diamante
 
 
c) Carbono grafito: Es otra estructura cristalina del carbono. Mientras que el carbono diamante es una red tridimensional, el grafito es un sólido con redes en forma de capa. Contiene agrupaciones de átomos de carbono unidos por enlaces covalentes puros, de dimensiones infinitas, pero en dos direcciones. De los cuatro electrones que tiene cada uno de los átomos de carbono, tres se utilizan para unirlo con un enlace covalente puro a otros tres en un mismo plano formando estructuras hexagonales de seis átomos, y el cuarto electrón está deslocalizado entre los planos tratando de unirlos. En virtud de esta estructura, el carbono grafito es conductor de la electricidad y del calor, carece de la dureza del diamante y se exfolia fácilmente, es decir, se puede laminar.
Carbono grafito
 

ENLACE IONICO

En temas anteriores, ya hemos estudiado el átomo y ahora vamos a ver cómo se pueden combinar esos átomos entre sí. Este aspecto es muy importante ya que, como veremos, según el tipo de enlaces que formen, podremos predecir las propiedades de las sustancias.
Las sustancias están constituidas por agrupaciones de átomos. Unas veces, tales agrupaciones forman agregados neutros: las moléculas y otras resultan con carga: los iones. Sólo los gases nobles y algunos metales en estado vapor están constituidos por moléculas monoatómicas (es decir, por átomos sueltos). La unión entre átomos, iones o moléculas es lo que constituye en enlace químico.
En el enlace químico juega un papel decisivo la configuración electrónica de la capa más externa de los átomos, la de mayor energía, llamada capa de valencia. De esa configuración depende, además, el tipo de enlace que se formará, por ello, y dada su importancia, se utilizan los diagramas de Lewis, en los que figura el símbolo del elemento rodeado de tantos puntos como electrones de valencia posea. Así por ejemplo, los diagramas de Lewis de los elementos del segundo periodo son:
En la tabla periódica, todos los átomos de un mismo grupo tiene propiedades similares porque todos tienen los mismos electrones de valencia, y un átomo usa algunos o todos los electrones de valencia para combinarse con otros.
Por otra parte, los gases nobles son muy estables ya que tienen una baja reactividad que se relaciona con su estructura electrónica; todos poseen los orbitales s y p de la última capa completos (a excepción del He). El hecho de que los orbitales de más alta energía de un átomo estén completamente llenos, les da una acusada estabilidad. Esto también se puede comprobar experimentalmente diciendo que tanto el P.I. como la A.E. de los gases nobles son muy altos, (no tienen tendencia ni a coger ni a ceder electrones).
El resto de los átomos, tienden a ganar, perder o compartir electrones con la finalidad de  adquirir configuración electrónica de gas noble y ganar así estabilidad. Por ello, los átomos se clasifican según esta tendencia en (además de los gases nobles antes descritos):
Metales:
  • Elementos que tienen pocos electrones en la última capa (1, 2 ó 3).
  • Tienen tendencia a perderlos para adquirir configuración electrónica de gas noble (tener la última capa completa).
  • Se cargarán positivamente formando lo que se denomina un catión.
No metales:
  • Tienen muchos electrones en la última capa (5, 6 ó 7).
  • Tienen tendencia a ganar para adquirir configuración electrónica de gas noble (completar la última capa).
  • Se cargarán negativamente formando lo que se denomina un anión.
En general, se puede decir que cuando un átomo se combina con otro para formar un compuesto, lo hace de tal manera que con ello adquiere la configuración electrónica del gas noble más cercano, (ocho electrones en su última capa, regla del octeto) y eso se puede conseguir a través de una cesión, captación o compartición de e. Esta es la razón por la que los gases nobles son tan inertes.
Hay elementos que no cumplen la regla del octeto, por ejemplo, el H, Li y Be, el número de electrones al que tienden es de dos puesto que el He, (gas noble más cercano), sólo tiene dos; y hay también muchos elementos del tercer período (o superior) que pueden albergar más de ocho electrones en su última capa al poseer orbitales "d" vacíos.Se produce enlace
 Existen tres tipos fundamentales de enlaces: iónico, covalente y metálico, y con ellos se pueden formar cuatro tipos de sustancias: las iónicas, las moleculares, las covalentes y las metálicas.
Es importante comentar que para que un determinado enlace se forme, tiene que haber necesariamente un desprendimiento de energía, es decir, el compuesto o molécula formada tiene que ser más estable que los átomos de los que se parte, pues de lo contrario no se formará el enlace.
Cuando dos átomos se encuentran infinitamente separados, no hay interacción entre ellos, sin embargo, a medida que se acercan empiezan a aparecer fuerzas de atracción entre el núcleo de uno y la nube electrónica de otro y viceversa con la consiguiente liberación de energía. A una distancia determinada (distancia de enlace), la energía liberada pasa por un mínimo (energía de enlace). Si la distancia de enlace se hace más pequeña, empiezan a aNo se produce enlaceparecer fuerzas de repulsión entre los dos núcleos y las dos nubes electrónicas, tanto más grandes cuanto más cerca estén, para lo cual haría falta aportar energía, tal y como se muestra en la figura (los datos se refieren a la molécula de hidrógeno). Si los átomos nada más empezar a acercarse, generan fuerzas de repulsión, tal y como muestra la segunda figura, nunca formarán un enlace, porque no existe una distancia que estabilice el sistema. Es lo que ocurre al acercar dos átomos de He, por ejemplo.

El enlace iónico es debido a fuerzas de atracción electrostática y no direccional entre iones de signo opuesto producidos por transferencia de electrones entre átomos de elementos de elevada diferencia de electronegatividad.
Como hemos indicado anteriormente, siempre que se forma un enlace, (del tipo que sea), se produce una liberación de energía, es decir, que el nivel de energía de los átomos unidos es menor que el de los átomos por separado.
En el caso de los compuestos iónicos se tiene que formar una red cristalina para que se produzca esa liberación de energía como ahora veremos en un ejemplo. Vamos a analizar la formación de NaCl a partir de los átomos libres de Na y Cl en estado gaseoso:
Na (g) + Cl2 (g)      à          Na+ (g) + Cl (g)      à              ( Na+Cl)n (s)
El NaCl es un sólido en el que 6 iones Cl-‑ rodean a un ion Na+ y a su vez cada ion Cl es rodeado por 6 iones Na+ formando una red tridimensional en la que la relación es 1:1, es decir, un ion sodio por cada ion cloro:

Para explicar este fenómeno vamos a utilizar la representación electrónica o diagrama de Lewis, según la cual, el símbolo de un átomo representa su núcleo y los electrones de las capas internas, y rodeando a éste se colocan puntos y/o aspas que representan los electrones de la capa de valencia. Los puntos se colocarán por pares si los e están apareados y aislados si no lo están.
Na       à        Z=11 
  1s2   2s2          2p6    3s1
Cl        à        Z=17  
   1s2   2s2         2p6     3s2       3p5  
el átomo de sodio tiene sólo un electrón en su última capa que "tenderá" a perder, quedándose cargado positivamente y, por el contrario, al cloro le falta un electrón para completar su capa, que lo captará del átomo de sodio, incorporándolo al orbital 3p, y así ambos tienen configuración electrónica de gas noble:
Na à Na+ + 1e  DE = + 496 KJ/mol
Cl  + 1e‑  à Cl-  DE =  ‑  348 KJ/mol
Energía necesaria: 
DE = +  148 KJ/mol
Aunque muchas veces se indique que los metales tienden a perder electrones, este fenómeno es siempre energéticamente desfavorable al igual que la aceptación de electrones por parte de los no metales, (salvo en el caso de algunos halógenos).
Desde el punto de vista energético este proceso es desfavorable ya que hay que aportar 148 KJ/mol, (aporte de energía necesario para que los átomos se ionizaran en estado gaseoso). No obstante, la formación de la red cristalina libera gran cantidad de energía por la atracción electrostática que ahora sufren los iones.
Imaginemos los iones Cl y Na+ infinitamente separados en estado gas y que se van acercando para formar el enlace. En un principio se libera energía por la atracción de los iones, pero cuando éstos están muy cerca, empiezan a tener importancia las repulsiones entre los electrones y entre los núcleos de los iones, por lo tanto existe una distancia interiónica para la que la energía potencial electrostática pasa por un mínimo y, en consecuencia, se libera la máxima energía.
Para los iones de Cloro y Sodio esta distancia es de 2'38 A°, (determinada por difracción de rayos X). Por lo tanto, la energía liberada al acercarse dos iones será:

Sin embargo la formación de la red cristalina libera una cantidad de energía mucho mayor debido a que un ion Cl es atraído por más de un ion Na+ y viceversa. En el caso de NaCl, la energía liberada al pasar de iones gaseosos a la red cristalina, (energía reticular), es de ‑790 KJ/mol (mayor que la calculada para dos iones aislados que era de – 580,4 KJ/mol). En definitiva, la energía necesaria para la ionización (que es de 148 KJ/mol), se ve compensada con la que se libera al formarse el cristal (‑790 KJ/mol).
Todos aquellos elementos cuya energía de ionización se vea compensada suficientemente por la energía reticular, tendrán tendencia a formar este tipo de enlace. Esto ocurre únicamente cuando se combinan elementos muy electronegativos, (anfígenos y halógenos), de alta afinidad electrónica con elementos poco electronegativos, (alcalinos, alcalinotérreos), de bajo potencial de ionización.
Ahora bien, no existe un enlace iónico puro (del 100 %), lo que quiere decir, que no hay una transferencia total de electrones del metal al no metal, habiendo siempre una parte de compartición de éstos entre los dos átomos enlazados.
La mayoría de las sales que provienen de oxoácidos son también de naturaleza iónica; el anión está formado por varios átomos y también forman redes cristalinas. Lo mismo le ocurre al catión amonio.
Los sólidos iónicos pueden cristalizar en varios tipos de redes. El que lo haga en un tipo u otro de red depende fundamentalmente del tamaño de los iones que la forman y de la carga que posean. Aquí tienes otras estructuras cristalinas diferentes de compuestos iónicos:

No contienen átomos sino iones y puesto que las fuerzas electrostáticas son muy fuertes, tendrán puntos de fusión y de ebullición muy altos.
 En estado sólido no conducen la electricidad, ya que los iones tienen posiciones fijas y carecen de movilidad, pero, al fundirse o disolverse en agua, se desmorona la red cristalina quedando los iones en libertad, por lo que estos compuestos fundidos o disueltos conducen la electricidad.
Son sólidos muy duros porque las fuerzas electrostáticas que unen los iones son grandes, pero también son frágiles, ya que, al haber un ordenamiento tan perfecto en la red, pequeños desplazamientos de los iones hacen que las fuerzas que antes eran de atracción pasen a ser de repulsión, por lo que el sólido se rompe:

En general, los sólidos iónicos son solubles en disolventes polares y no en apolares, ya que, las moléculas del disolvente se colocan alrededor de los iones (orientando sus dipolos de forma adecuada), y éstos se separan de la red cristalina.

Hay que tener en cuenta que, no todas las sustancias que en disolución dan iones son sustancias iónicas; también lo hacen algunas sustancias covalentes polares como HCl o H2SO4.
Podemos estudiar la variación de algunas de las propiedades que acabamos de comentar en base a las fuerzas electrostáticas y no direccionales que unen a los iones en la red cristalina. Dichas fuerzas vienen determinadas por la Ley de Coulomb:
por lo tanto, a medida que los iones estén más cargados, y sus radios sean más pequeños, las fuerzas electrostáticas que los unen serán más fuertes, por lo que, tendrán puntos de fusión y ebullición más altos, serán más duros, serán menos solubles, etc. Con los siguientes datos podrás apreciarlo con mayor facilidad:
Cristal Q1 Q2 r (Aº) Punto de fusión Dureza Solubilidad (gr/l)
NaI 1 1 3’11 660 2’8 158’70
NaF 1 1 2’31 988 3’2 4’22
CaF2 2 1 2’35 1360 4’0 0’15
Al2O3 3 2 1’90 2030 9’0 0’00